
Design	Strategies	3:	Divide	into	
cases

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	1.7

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Design	
Strategies

Combine	simpler	
functions

Call	a	more	
general	function

Communicate	
via	State

Lesson	2.1

2

Divide	into	Cases

Use	a	template

Divide	into	cases	on	<condition>

• Sometimes	you	need	to	break	up	an	argument	
in	some	way	other	than	by	its	template.

• We	already	saw	this	in	Lesson	0.4	in	the	
definition	of	abs:

; abs : Real -> Real
; RETURNS: the absolute value of the given real number.
; STRATEGY: divide into cases on sign of x
(define (abs x)
(if (< x 0)

(- 0 x)
x))

3

Example:	income	tax

• Imagine	we	are	computing	income	tax	in	a	
system	where	there	are	three	rates:
– One	on	incomes	less	than	$10,000
– One	on	incomes	between	$10,000	and	$20,000
– One	on	incomes	of	$20,000	and	over

• The	natural	thing	to	do	is	to	partition	the	
income	into	three	cases,	corresponding	to	
these	three	income	ranges.

4

Write	a	cond or	if	that	divides	the	data	
into	the	desired	cases	

5

;; STRATEGY: Cases on amt
;; f : NonNegReal -> ??
(define (f amt)
(cond
[(and (<= 0 amt) (< amt 10000)) ...]
[(and (<= 10000 amt) (< amt 20000)) ...]
[(<= 20000 amt) ...]))

Write	a	cond or	if	that	divides	the	data	
into	the	desired	cases	

;; tax-on : NonNegReal -> NonNegReal
;; GIVEN: A person’s income
;; RETURNS: the tax on the income
;; EXAMPLES:
;; STRATEGY: Cases on amt
(define (tax-on amt)
(cond
[(and (<= 0 amt) (< amt 10000)) ...]
[(and (<= 10000 amt) (< amt 20000)) ...]
[(<= 20000 amt) ...]))

This	is	contract	is	sloppy.	Currency	
amounts	should	never	be	Real.	
They	should	always	be	integers,	
and	units	should	be	specified.			
But	we	don't	need	to	be	so	careful	
for	this	made-up	example.

The	predicates	must	be	exhaustive.		Make	
them	mutually	exclusive	when	you	can.

Now	fill	in	the	blanks
;; tax-on : NonNegReal -> NonNegReal
;; GIVEN: A person’s income
;; RETURNS: the tax on the income
;; EXAMPLES:
;; STRATEGY: Cases on amt

(define (tax-on amt)
(cond
[(and (<= 0 amt) (< amt 10000))
0]

[(and (<= 10000 amt) (< amt 20000))
(* 0.10 (- amt 10000))]
[(<= 20000 amt)
(+ 1000 (* 0.20 (- amt 20000)))]))

That's	all	you	need	
to	do!

Another	example
;; ball-after-tick : Ball -> Ball
;; STRATEGY: cases on whether ball would hit the wall on
;; the next tick

(define (ball-after-tick b)
(if (ball-would-hit-wall? b)
(ball-after-bounce b)
(ball-after-straight-travel b)))

8

Where	does	cases	fit	in	our	menu	of	
design	strategies?

• If	you	are	inspecting	a	piece	of	enumeration	
or	mixed	data,	you	almost	always	want	to	use	
the	template	for	that	data	type.

• Cases	is	just	for	when	dividing	up	the	data	by	
the	template	doesn't	work.

9

Next	Steps

• If	you	have	questions	or	comments	about	this	
lesson,	post	them	on	the	discussion	board.

• Go	on	to	the	next	lesson

10

